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1 Kaplansky’s Theorem and Polar Decomposition

1.1 Kaplansky’s theorem, general case
Let’s finish the proof of Kaplansky’ theorem.

Theorem 1.1 (Kaplansky, late 50s). Let M C B(H) be a von Neumann algebra, and let
My € M be a SO-dense *-algebra. Then (My )1 = (M)y. Moreso, (Mo, )1 = (My)1 and
=5 S0

(Mo 4+ )1 = (My)r.

In other words, if z € M, there exist #; € My such that |lz;|| < ||=| and 2; % 2. We
have shown this in the case where z = 2* € (M;). Let’s extend it to the non-self-adjoint
case.

2 so

Proof. If x € (M), then there exist y; € (Mg )1 such that y; ~> /2. But then y? =
(v/7)? = z; this is because

(2 — y2)E = yilyi — v)E + (yi — y)(¥E).

and y; = y.

To deal with general € (M), consider the *-algebra of matrices M (M) C My(B(H)) =
B(H®H). This algebra of matrices is SO-closed, so it is a von Neumann algebra. Moreover,
M>(My) is SO dense in Ma(M). By the first part, the operator

Y = LS "g] € (Ma(M));.

The norm of Y is 1 because Y* = Y, and Y*Y is diagonal with norm ||z||?>. So there
exist Y; € (Ma(My)y)1 such that V; = V. Since |Vi|| < 1, ||[Vili2]l < 1. So we get
[Yili2 2 [Yili2 = = O

Corollary 1.1. Let M C B(H) be a *-algebra with unit. The following are equivalent:

1. M is a von Neumann algebra (i.e. is WO-closed)



2. M is ultraweak-closed.
3. (M) is ultraweak compact.

Proof. (1) = (3): If M is a von Neumann algebra, then M = (M,)*, so 3 follows by the
Banach-Alaoglu theorem.
(3) = (1): This follows from Kaplansky’s theorem. O

1.2 Polar decomposition

Definition 1.1. If x € B(H), the left support ¢(x) is the orthogonal projection onto
[zH], and the right support r(z) is the orthogonal projection onto (ker z)+ = im z*.

Proposition 1.1. The left and right support satisfy the following:
1. £(x) is the smallest projection e € B(H) such that ex = x.
2. r(x) is the smallest projection f € B(H) such that xf = x.
So if z = z*, then ¢(x) = r(z).

Definition 1.2. If x € B(H) is self adjoint, then s(x) = ¢(z) = r(z) is called the support
of z.

Recall that a partial isometry v is an element such that v*v and vv* are projections.’

Proposition 1.2. Ifv € B(H) is a partial isometry, then {(v) = vv* and r(v) = v = v*v.

Theorem 1.2 (Polar decomposition). Let x € B(H). There exist a unique a € B(H)4
and partial isometry v € B(H) such that x = va and v*v = s(a).

Remark 1.1. This is analogous to the fact that if o € C, we can express o = @—Ma!.

Proof. Observe that if = va, then z*z = av*va = a®. So a = Vz*z.

How should we define v? If ¢ € r(z)(H), then 2 = vaé with ||z£]|? = (z*2¢, &) =
(a*¢,€) = ||a&||*. So we define v(ag) := x£ for a& € s(a)H and v(n) := 0if n L s(a)(H).
So v is a partial isometry on H.

For uniqueness, we saw that we must have a = v/z*z. If, in addition, v*v = s(z), then
vaé = z€. So this choice is forced upon us. O

LIf one of these is a projection, so is the other.
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